# SYLLABUS

## FOR

# COMPLEMENTARY COURSES

## CHEMISTRY COMPLEMENTARY COURSE STRUCTURE

| Semester | Code No    | Course Title                                               | Hrs/<br>Week | Total<br>Hrs | Credit | Marks |
|----------|------------|------------------------------------------------------------|--------------|--------------|--------|-------|
|          | CHE1C01    | Complementary Course I:<br>General Chemistry               | 2            | 32           | 2      | 75    |
| Ι        | -          | Complementary Course V:<br>Chemistry Practical             | 2            | 32           | *      | -     |
|          | CHE2C02    | Complementary Course II:<br>Physical Chemistry             | 2            | 32           | 2      | 75    |
| Π        | -          | Complementary Course V:<br>Chemistry Practical             | 2            | 32           | *      | -     |
|          | CHE3C03    | Complementary Course III:<br>Organic Chemistry             | 3            | 48           | 2      | 75    |
| III      | -          | Complementary Course V:<br>Chemistry Practical             | 2            | 32           | -      | -     |
|          | CHE4C04    | Complementary Course IV:<br>Physical and Applied Chemistry | 3            | 48           | 2      | 75    |
| IV       | CHE4C05(P) | Complementary Course V:<br>Chemistry Practical             | 2            | 32           | 4*     | 100   |
| Total    |            |                                                            |              |              | 12     | 400   |

## Total Credits: 12 (Internal: 20%; External: 80%)

\* Examination will be held at the end of semester IV.

## SEMESTER I

## **Course Code: CHE1C01**

## **Complementary Course I: GENERAL CHEMISTRY**

Total Hours: 32; Credits: 2; Hours/Week: 2; Total Marks 75 (Internal 15 & External 60)

| CHE1C01       | GENERAL CHEMISTRY                                                        | L       | Т     | Р       | C     |
|---------------|--------------------------------------------------------------------------|---------|-------|---------|-------|
|               |                                                                          | 2       | 0     | 0       | 2     |
| Objective(s)  | To provide the students a thorough knowledge about the chemistry of      |         |       |         | y of  |
|               | quantitative and qualitative analysis and the theory                     | ries of | chemi | cal bon | ding. |
|               | It will also impart the ideas about atomic nucleus and the importance of |         |       |         |       |
|               | metals in biological systems.                                            |         |       |         |       |
| Course outcom | me (s)                                                                   |         |       |         |       |
| CO1           | To understand and to apply the theories of quantitative and qualitative  |         |       | ative   |       |
|               | analysis.                                                                |         |       |         |       |
| CO2           | To understand the theories of chemical bonding.                          |         |       |         |       |
| CO3           | To appreciate the uses of radioactive isotopes.                          |         |       |         |       |
| CO4           | To understand the importance of metals in biological systems.            |         |       |         |       |

## Module I: Analytical Chemistry (10 hrs)

Atomic mass - Molecular mass - Mole concept – Molar volume - Oxidation and reduction – Oxidation number and valency - Equivalent mass. Methods of expressing concentration: Molality, molarity, normality and mole fraction. Calculation of concentration on dilution of given solution (problems).

Theory of volumetric analysis – Acid-base, redox and complexometric titrations – Acidbase, redox and complexometric indicators. Double burette method of titration: Principle and advantages.

Principles in the separation of cations in qualitative analysis - Applications of common ion effect and solubility product - Microanalysis and its advantages.

Accuracy & Precision (mention only).

## References

1. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6<sup>th</sup> Edn., Pearson Education, Noida, 2013.

2. G. Svehla, Vogel's Qualitative Inorganic Analysis, 7<sup>th</sup> Edn., Prentice Hall, New Delhi, 1996.

## Module II: Atomic Structure and Chemical Bonding (10 hrs)

Atomic Structure: Bohr atom model and its limitations, de Broglie equation - Heisenberg uncertainty principle - Schrödinger wave equation (mention only) - Atomic orbitals -

Quantum numbers and their significance - Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle – Electronic configuration of atoms.

Chemical Bonding: Introduction – Type of bonds.

Ionic bond: Factors favouring the formation of ionic bonds - Lattice energy of ionic compounds and its application.

Covalent bond: Lewis theory – Coordinate bond.

VSEPR theory: Shapes of BeCl<sub>2</sub>, BF<sub>3</sub>, SnCl<sub>2</sub>, CH<sub>4</sub>, NH<sub>3</sub>, H<sub>2</sub>O, NH<sub>4</sub><sup>+</sup>, SO<sub>4</sub><sup>2-</sup>, PCl<sub>5</sub>, SF<sub>4</sub>, ClF<sub>3</sub>, XeF<sub>2</sub>, SF<sub>6</sub>, IF<sub>5</sub>, XeF<sub>4</sub>, IF<sub>7</sub> and XeF<sub>6</sub>.

Valence Bond theory - Hybridisation involving s, p and d orbitals: sp (acetylene),  $sp^{2}$  (ethylene),  $sp^{3}$  (CH<sub>4</sub>),  $sp^{3}d$  (PCl<sub>5</sub>),  $sp^{3}d^{2}$  (SF<sub>6</sub>).

Molecular Orbital theory: LCAO – Electronic configuration of  $H_2$ ,  $B_2$ ,  $C_2$ ,  $N_2$ ,  $O_2$  and CO – Calculation of bond order – determination of HOMO and LUMO – Explanation of bond length and bond strength.

Intermolecular forces - Hydrogen bonding in H<sub>2</sub>O - Dipole-dipole interactions.

#### References

1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd., Hyderabad, 1999.

2. R. K. Prasad, *Quantum Chemistry*, 4<sup>th</sup> Edn., New Age International (P) Ltd., New Delhi, 2012.

3. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4<sup>th</sup> Edn., Tata McGraw Hill Publishing Company, Noida, 2007.

4. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31<sup>st</sup> Edn., Milestone Publishers and Distributors, New Delhi, 2013.

#### Module III: Nuclear Chemistry (6 hrs)

Natural radioactivity - Modes of decay - Group displacement law.

Nuclear forces - n/p ratio - Nuclear stability - Mass Defect - Binding energy. Isotopes, isobars and isotones with examples.

Nuclear fission - Atom bomb - Nuclear fusion – Hydrogen bomb - Nuclear reactors Application of radioactive isotopes –  ${}^{14}$ C dating, Rock dating, Isotopes as tracers, Radio diagnosis, Radiotherapy.

#### References

1. H. J. Arnikar, *Essentials of Nuclear Chemistry*, 4<sup>th</sup> Edn., New Age International (P) Ltd., New Delhi, 2005.

2. R. Gopalan, Elements of Nuclear Chemistry, Vikas Publ. House, 2000.

### Module IV: Bioinorganic Chemistry (6 hrs)

Metal ions in biological systems - Biochemistry of iron – Haemoglobin and myoglobin -  $O_2$  and  $CO_2$  transportation (mechanism not required) - Chlorophyll and photosynthesis (mechanism not expected) – Elementary idea of structure and mechanism of action of sodium potassium pump - Biochemistry of zinc and cobalt.

#### References

1. B. R. Puri, L. R. Sharma, K. C. Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers, New Delhi, 2010.

2. G. L. Meissler, D. A. Tarr, Inorganic Chemistry, 3rd Edn. Pearson Education, 2004.

3. J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, *Inorganic Chemistry*, 5<sup>th</sup> Edn., Pearson, 2009.

4. F. A. Cotton, G. Wilkinson, P. L. Gaus, *Basic Inorganic Chemistry*, 3<sup>rd</sup> Edn., John – Wiley, 1995.

| Mark Distribution |          |  |  |  |  |
|-------------------|----------|--|--|--|--|
| Module I 22 Marks |          |  |  |  |  |
| Module II         | 25 Marks |  |  |  |  |
| Module III        | 16 Marks |  |  |  |  |
| Module IV         | 16 Marks |  |  |  |  |

## **SEMESTER II**

### **Course Code: CHE2C02**

### **Complementary Course II: PHYSICAL CHEMISTRY**

Total Hours: 32; Credits: 2; Hours/Week: 2; Total Marks 75 (Internal 15 & External 60)

| CHE2C02      | PHYSICAL CHEMISTRY                                                           | L      | Т      | Р       | С     |  |
|--------------|------------------------------------------------------------------------------|--------|--------|---------|-------|--|
|              |                                                                              | 2      | 0      | 0       | 2     |  |
| Objective(s) | To provide the students a thorough know                                      | wledge | e aboi | it diff | erent |  |
|              | terminologies in thermodynamics and the cont                                 | inuity | betwe  | en diff | erent |  |
|              | states of matter. To impart an idea about the basic principles of            |        |        |         | s of  |  |
|              | electrochemistry.                                                            |        |        |         |       |  |
| Course outc  | Course outcome (s)                                                           |        |        |         |       |  |
| CO1          | To understand the importance of free energy in defining spontaneity.         |        |        |         |       |  |
| CO2          | To realise the theories of different states of matter and their implication. |        |        |         |       |  |
| CO3          | To understand the basic principles of electrochemi                           | stry.  |        |         |       |  |

#### Module I: Thermodynamics (6 hrs)

Definition of thermodynamic terms - System - Surroundings - Types of systems.

First law of Thermodynamics - Internal energy - Significance of internal energy change – Enthalpy. Second law of Thermodynamics - Entropy and spontaneity - Statement of second law based on entropy. Entropy change in phase transitions (derivation not required) - Entropy of fusion, vaporization and sublimation. The concept of Gibbs free energy - Physical significance of free energy - Conditions for equilibrium and spontaneity based on  $\Delta G$  values - Effect of temperature on spontaneity of reaction. Third law of Thermodynamics.

#### References

1. B. R. Puri, L. R. Sharma, M. S. Pathania, *Principles of Physical Chemistry*, 46<sup>th</sup> Edn., Vishal Publishing Company, New Delhi, 2013.

2. J. Rajaram, J. C. Kuriacose, *Chemical Thermodynamics*, Pearson Education, New Delhi, 2013.

#### Module II: Gaseous and Solid States (10 hrs)

*Gaseous State:* Introduction - Kinetic molecular model of gases – Maxwell distribution of velocities and its use in calculating molecular velocities – Average velocity, RMS velocity and most probable velocity (derivations not required) – Boyle's law – Charles's law – Ideal gas equation – Behaviour of real gases – Deviation from ideal behavior - van der Waals equation (derivation not required).

*Solid State:* Introduction - Isotropy and anisotropy - Symmetry elements in crystals - The seven crystal systems – Miller indices - Bravais lattices – Bragg's equation (derivation required) and its applications (mention only). Defects in crystals: Non-stoichiometric and stoichiometric defects - Extrinsic and intrinsic defects.

#### References

1. K. L. Kapoor, A Textbook of Physical chemistry, Vol. 1, 4<sup>th</sup> Edn., Macmillan India Ltd., 2011.

2. B. R. Puri, L. R. Sharma, M. S. Pathania, *Elements of Physical chemistry*, Vishal Pub. Co., 2013.

#### Module III: Liquid State and Solutions (6 hrs)

*Liquid State:* Introduction - Vapour pressure, surface tension and viscosity – Explanation of these properties on the basis of intermolecular attraction.

*Solutions:* Kinds of solutions - Solubility of gases in liquids – Henry's law and its applications - Colligative properties - Osmotic pressure - Laws of osmotic pressure - Reverse osmosis and its applications - Determination of molecular mass using colligative properties.

### References

1. K. L. Kapoor, A Textbook of Physical chemistry, Vol. 1, 4<sup>th</sup> Edn., Macmillan India Ltd., 2011.

2. B. R. Puri, L. R. Sharma, M. S. Pathania, *Elements of Physical chemistry*, Vishal Pub. Co., 2013.

## Module IV: Electrochemistry (10 hrs)

Specific conductance, equivalent conductance and molar conductance - Variation of conductance with dilution - Kohlrausch's law - Degree of ionization of weak electrolytes - Application of conductance measurements – Conductometric titrations.

Galvanic cells - Cell and electrode potentials - IUPAC sign convention – Reference electrodes – Standard Hydrogen electrode – Calomel electrode - Standard electrode potential - Nernst equation -  $H_2$ -O<sub>2</sub> fuel cell.

Ostwald's dilution law – Buffer solutions – Buffer action [acetic acid/sodium acetate & NH<sub>4</sub>OH/NH<sub>4</sub>Cl], applications of buffers.

#### References

P. Atkins, J. Paula Atkins, *Physical Chemistry*, 8<sup>th</sup> Edn., Oxford University Press, 2006.
 K. K. Sharma, L. K. Sharma, *A Textbook of Physical Chemistry*, 5<sup>th</sup> Edn., Vikas Publishing House, New Delhi, 2012.

3. Gordon M. Barrow, *Physical Chemistry*, 5<sup>th</sup> Edn., Tata McGraw Hill Education, New Delhi, 2006.

4. F. Daniels, R. A. Alberty, *Physical Chemistry*, 5<sup>th</sup> Edn., John Wiley and Sons, Canada, 1980.

| Mark Distribution |          |  |  |  |
|-------------------|----------|--|--|--|
| Module I          | 16 Marks |  |  |  |
| Module II         | 23 Marks |  |  |  |
| Module III        | 16 Marks |  |  |  |
| Module IV         | 24 Marks |  |  |  |

## **SEMESTER III**

## **Course Code: CHE3C03**

## **Complementary Course III: ORGANIC CHEMISTRY**

Total Hours: 48; Credits: 2; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

| CHE3C03      | ORGANIC CHEMISTRY                                                          | L    | Т       | Р      | C   |
|--------------|----------------------------------------------------------------------------|------|---------|--------|-----|
|              |                                                                            | 3    | 0       | 0      | 2   |
| Objective(s) | To provide the students a thorough knowledge                               | abou | t basic | theory | and |
|              | concepts of organic chemistry.                                             |      |         |        |     |
| Course outco | ome (s)                                                                    |      |         |        |     |
| CO1          | To understand the basic concepts involved in reaction intermediates.       |      |         |        |     |
| CO2          | To realise the importance of optical activity and chirality.               |      |         |        |     |
| CO3          | To appreciate the importance of functional groups and aromatic stability.  |      |         |        |     |
| CO4          | To understand the basic structure and importance of carbohydrates, nucleic |      |         |        |     |
|              | acids, alkaloids and terpenes.                                             |      |         |        |     |

## Module I: Organic Chemistry – Some Basic Concepts (10 hrs)

Introduction: Homolysis and heterolysis of bonds – Electrophiles and nucleophiles.

*Reaction Intermediates*: Carbocations, carbanions and free radicals (types, hybridization and stability).

*Types of organic reactions*: Addition, elimination, substitution and rearrangement reactions (definition and one example each).

*Electron Displacement Effects*: Inductive effect: Definition – Characteristics - +I and –I groups.

Applications: Explanation of substituent effect on the acidity of aliphatic carboxylic acids. Mesomeric effect: Definition – Characteristics - +M and –M groups. Applications: Comparison of electron density in benzene, nitrobenzene and aniline. Hyperconjugation: Definition – Characteristics. Example: Propene.

Applications: Comparison of stability of 1-butene & 2-butene. Electromeric effect: Definition – Characteristics - +E effect (addition of  $H^+$  to ethene) and –E effect (addition of  $CN^-$  to acetaldehyde). Steric effect (causes and simple examples).

## References

1. Peter Sykes, A Guide book to Mechanism in Organic Chemistry, 6<sup>th</sup> Edn., Pearson Education, New Delhi, 2013.

2. P. S. Kalsi, *Organic Reactions, Stereochemistry and Mechanisms*, 4<sup>th</sup> Edn., New Age International Publishers, New Delhi, 2006.

3. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2<sup>nd</sup> Edn., Vikas Publishing House, New Delhi, 2004.

4. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3<sup>rd</sup> Edn., Vishal Publishing Company Co., 2010.

5. R. T. Morrison, R. N. Boyd, *Organic Chemistry*, 7<sup>th</sup> Edn., Pearson Education, New Delhi, 2013.

6. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.

## Module II: Stereochemistry (6 hrs)

*Conformations:* Conformations of ethane, cyclohexane and methylcyclohexane – Explanation of stability.

*Geometrical Isomerism:* Definition – Condition – Geometrical isomerism in but-2-ene and but-2-ene-1,4-dioic acid – Methods of distinguishing geometrical isomers using melting point and dipole moment.

*Optical Isomerism:* Optical activity – Chirality – Enantiomers – Meso compounds – Diastereoisomers – Optical isomerism in lactic acid and tartaric acid.

#### References

1. R. T. Morrison, R. N. Boyd, *Organic Chemistry*, 7<sup>th</sup> Edn., Pearson Education, New Delhi, 2013.

2. I. L. Finar, Organic Chemistry, Vol. I, 5<sup>th</sup> Edn., Pearson Education, New Delhi, 2013.

3. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3<sup>rd</sup> Edn., Vishal Publishing Company Co., 2010.

4. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2<sup>nd</sup> Edn., Vikas Publishing House, New Delhi, 2004.

## Module III: Aromatic Hydrocarbons (5 hrs)

Nomenclature and isomerism in substituted benzene. Structure and stability of benzene: Kekule, resonance and molecular orbital description.

Mechanism of aromatic electrophilic substitution: Halogenation, nitration, sulphonation and Friedel-Craft's reactions – orientation effect of substituents.

Aromaticity and Huckel's rule: Application to benzenoid (benzene, naphthalene and anthracene) and nonbenzenoid (pyrrole, pyridine and indol) aromatic compounds.

## References

1. R. T. Morrison, R. N. Boyd, *Organic Chemistry*, 7<sup>th</sup> Edn., Pearson Education, New Delhi, 2013.

2. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.

3. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3<sup>rd</sup> Edn., Vishal Publishing Company Co., 2010.

4. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2<sup>nd</sup> Edn., Vikas Publishing House, New Delhi, 2004.

#### Module IV: Chemistry of Functional Groups – I (8 hrs)

*Halogen Compounds:* Preparation of alkyl halides from alkanes and alkenes – Wurtz reaction and Fittig's reaction – Mechanism of  $S_N1$  and  $S_N2$  reactions of alkyl halides – Effect of substrate and stereochemistry.

*Alcohols:* Preparation from Grignard reagent – Preparation of ethanol from molasses – Wash, rectified spirit, absolute alcohol, denatured spirit, proof spirit and power alcohol (mention only) – Comparison of acidity of ethanol, isopropyl alcohol and *tert*-butyl alcohol – Haloform reaction and iodoform test – Luca's test – Chemistry of methanol poisoning – Harmful effects of ethanol in the human body.

*Phenols:* Preparation from chlorobenzene – Comparison of acidity of phenol, *p*-nitrophenol and *p*-methoxyphenol – Preparation and uses of phenolphthalein.

## Module V: Chemistry of Functional Groups – II (8 hrs)

*Aldehydes & Ketones:* Preparation from alcohols – Nucleophilic addition reactions (HCN and bisulphite) – Comparison of nucleophilic addition rate of aliphatic aldehydes and ketones.

*Carboxylic Acids:* Preparation from Grignard reagent – Decarboxylation – Kolbe electrolysis.

*Amines:* Preparation from nitro compounds – Hofmann's bromamide reaction – Hofmann's carbylamines reaction. Basicity: Comparison of basicity of ammonia, methyl amine and aniline.

*Diazonium Salts*: Preparation and synthetic applications of benzene diazonium chloride – Preparation and uses of methyl orange.

#### References

1. R. T. Morrison, R. N. Boyd, *Organic Chemistry*, 7<sup>th</sup> Edn., Pearson Education, New Delhi, 2013.

2. I. L. Finar, Organic Chemistry, Vol. I, 5<sup>th</sup> Edn., Pearson Education, New Delhi, 2013.

3. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3<sup>rd</sup> Edn., Vishal Publishing Company Co., 2010.

4. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2<sup>nd</sup> Edn., Vikas Publishing House, New Delhi, 2004.

#### Module VI: Biomolecules (8 hrs)

*Carbohydrates:* Classification with examples - cyclic structures of glucose and fructose - Applications of carbohydrates.

Enzymes: Characteristics and examples.

*Nucleic acids:* Structure of pentose sugar, nitrogenous base, nucleoside and nucleotide – Double-helical structure of DNA – Difference between DNA and RNA – DNA fingerprinting and its applications.

## References

1. R. T. Morrison, R. N. Boyd, *Organic Chemistry*, 7<sup>th</sup> Edn., Pearson Education, New Delhi, 2013.

2. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.

3. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3<sup>rd</sup> Edn., Vishal Publishing Company Co., 2010.

4. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2<sup>nd</sup> Edn., Vikas Publishing House, New Delhi, 2004.

## Moldule VII: Alkaloids and Terpenes (3 hrs)

*Alkaloids:* Classification – Source, structure and physiological functions of nicotine, coniine and piperine.

*Terpenes:* Classification with examples – Isoprene rule – Isolation of essential oils by steam distillation – Uses of lemongrass oil, eucalyptus oil and sandalwood oil – Source, structure and uses of citral and menthol – Natural rubber – Vulcanization and its advantages.

Note: Structural elucidation not expected in any case.

## References

1. R. T. Morrison, R. N. Boyd, *Organic Chemistry*, 7<sup>th</sup> Edn., Pearson Education, New Delhi, 2013.

2. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.

3. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3<sup>rd</sup> Edn., Vishal Publishing Company Co., 2010.

4. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2<sup>nd</sup> Edn., Vikas Publishing House, New Delhi, 2004.

| Mark Distribution |          |  |  |  |  |
|-------------------|----------|--|--|--|--|
| Module I          | 15 Marks |  |  |  |  |
| Module II         | 10 Marks |  |  |  |  |
| Module III        | 10 Marks |  |  |  |  |
| Module IV         | 14 Marks |  |  |  |  |
| Module V          | 13 Marks |  |  |  |  |
| Module VI         | 12 Marks |  |  |  |  |
| Module VII        | 5 Marks  |  |  |  |  |

## SEMESTER IV

110

#### **Course Code: CHE4C04**

#### Complementary Course IV: PHYSICAL AND APPLIED CHEMISTRY

Total Hours: 48; Credits: 2; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

|               | DIVICAL AND ADDITED CHEMICTDY                                                | т     | т        | D        | C      |
|---------------|------------------------------------------------------------------------------|-------|----------|----------|--------|
| CHE4C04       | PHYSICAL AND APPLIED CHEMISTRY                                               | L     | Т        | Р        | C      |
|               |                                                                              | 3     | 0        | 0        | 2      |
| Objective (s) | To provide the students a thorough knowledge a                               | bout  | colloida | l chem   | istry, |
|               | nanochemistry and the importance of chemistr                                 | ry in | daily    | life. It | also   |
|               | provides a basic idea related to separation and spectral techniques. It also |       |          |          |        |
|               | imparts the idea of green processes with special emphasis on environment.    |       |          |          | ent.   |
| Course outco  | ome (s)                                                                      |       |          |          |        |
| CO1           | To understand the basic concepts behind colloidal state and nanochemistry.   |       |          |          |        |
| CO2           | To understand the importance of green chemistry and pollution prevention.    |       |          |          |        |
| CO3           | To appreciate the importance of different separation methods and spectral    |       |          |          |        |
|               | techniques.                                                                  |       |          |          |        |
| CO4           | To understand the extent of chemistry in daily life.                         |       |          |          |        |

#### Module I: Colloidal Chemistry (6 hrs)

True solution, colloidal solution and suspension. Classification of colloids: Lyophilic, lyophobic, macromolecular, multimolecular and associated colloids with examples. Purification of colloids by electrodialysis and ultrafiltration. Properties of colloids: Brownian movement – Tyndall effect – Electrophoresis. Origin of charge and stability of colloids – Coagulation - Hardy Schulze rule – Protective colloids - Gold number. Emulsions. Applications of colloids: Delta formation, medicines, emulsification, cleaning action of detergents and soaps.

#### References

1. B. R. Puri, L. R. Sharma, M. S. Pathania, *Principles of Physical Chemistry*, 46<sup>th</sup> Edn., Vishal Publishing Company, New Delhi, 2013.

2. F. Daniels, R. A. Alberty, *Physical Chemistry*, 5<sup>th</sup> Edn., John Wiley and Sons, Canada, 1980.

#### Module II: New Vistas in Chemistry (6 hrs)

*Nanochemistry*: Introduction – classification of nanomaterials (0D, 1D, 2D) - size dependence of material properties (optical, electrical and catalytic) - surface to volume ratio and its significance - application of nanomaterials in electronics, optics, catalysis and medicine (detailed discussion not expected).

*Green Chemistry*: Definition and need of green chemistry - principles (detailed discussion not expected) - atom economy - green solvents - green synthesis of Ibuprofen.

#### References

1. M. A. Shah, Tokeer Ahmad, *Principles of Nanoscience and Nanotechnology*, Narosa Publishing House, New Delhi, 2010.

2. T. Pradeep, A Textbook of Nanoscience and Nanotechnology, McGrawhill, New Delhi, 2012.

3. V. K. Ahluwaliya, Green Chemistry, Narosa Publishing House, New Delhi, 2011.

## Module III: Chromatography (6 hrs)

*Chromatography*- Introduction - Adsorption and partition chromatography - Principle and applications of column, thin layer, paper and gas chromatography - Rf value – Relative merits of different techniques.

## References

1. R. A. Day Junior, A. L. Underwood, *Quantitative Analysis*, 5<sup>th</sup> Edn., Prentice Hall of India Pvt. Ltd., New Delhi, 1988.

2. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Text Book of Quantitative Chemical Analysis*, 6<sup>th</sup> Edn., Pearson Education, 2003.

3. R. Gopalan, P.Subramanian, K Rengarajan, *Elements of Analytical Chemistry*, S. Chand and Co., New Delhi, 2004.

4. R. P. Budhiraja, Separation chemistry, New Age International (P) Ltd., 2007.

## Module IV: Spectroscopy (10 hrs)

Origin of spectra - Interaction of electromagnetic radiation with matter. Different types of energy levels in molecules: Rotational, vibrational and electronic levels. Statement of Born-Oppenheimer approximation - Fundamental laws of spectroscopy and selection rules (derivations not required).

*IR Spectroscopy:* Introduction - Group frequency concept - Characteristic stretching frequencies of O-H, N-H, C-H, C=C, C=N and C=O functional groups - Fingerprint region in IR spectra.

*UV-Visible Spectroscopy:* Introduction - Beer-Lambert's law - Electronic transitions in molecules ( $\sigma \rightarrow \sigma^*$ ,  $n \rightarrow \sigma^*$ ,  $\pi \rightarrow \pi^*$  and  $n \rightarrow \pi^*$ ) - Chromophore and auxochrome - Red shift and blue shift.

*NMR Spectroscopy:* Introduction - Chemical shift and spin-spin coupling - Application in elucidating the structure of ethanol, dimethyl ether, propanal and acetone (detailed study not required).

#### References

1. P. S. Kalsi, *Applications of Spectroscopic Techniques in Organic Chemistry*, 6<sup>th</sup> Edn., New Age International (P) Ltd., New Delhi, 2004.

2. C. N. Banwell, E. M. Mc Cash, *Fundamentals* of *Molecular Spectroscopy*, 4<sup>th</sup> Edn., McGraw–Hill publishing Company Limited, New Delhi, 2002.

#### Module V: Polymers (4 hrs)

Classification of polymers - Addition and condensation polymers – Thermoplastics and thermosetting plastics - Structure and applications of synthetic rubbers (Buna-S, Buna-N and neoprene), synthetic fibres (Nylon 66, Nylon 6 and dacron), thermoplastics (polyethene, polystyrene, PVC and teflon) and thermosetting plastics (bakelite and melmac). Uses of kevlar, nomex and lexan – Biodegradable polymers (PGA, PLA and PHBV) and their applications.

#### References

V. R. Gowarikar, *Polymer Chemistry*, New Age International Pvt. Ltd., New Delhi, 2010.
 Fred. W. Billmeyer, *Textbook of Polymer Science*, 3<sup>rd</sup> Edn., Wiley India, Delhi, 2008.

## Module VI: Environmental Pollution (6 hrs)

Definition – Types of pollution.

Air pollution: Pollution by oxides of nitrogen, carbon and sulphur. Effects of air pollution: Depletion of ozone, green house effect and acid rain.

Water pollution: Pollution due to sewage, industrial effluents, soaps, detergents, pesticides, fertilizers and heavy metals – Eutrophication - Biological magnification and bioaccumulation - Effects of water pollution. Water quality parameters – DO, BOD and COD (elementary idea only).

Soil pollution – Pollution due to plastics.

Thermal pollution and radioactive pollution: Sources, effects and control measures.

#### References

1. A. K. De, *Environmental Chemistry*, 6<sup>th</sup> Edn., New Age International Pvt. Ltd., New Delhi, 2006.

2. A. K. Ahluwalia, Environmental Chemistry, Ane Books India, New Delhi, 2008.

## Module VII: Chemistry in Daily Life (10 hrs)

*Petrochemicals:* Name, carbon range and uses of fractions of petroleum distillation – Octane number - Cetane number – Flash point. LPG and CNG: Composition and uses.

*Pharmaceuticals:* Drug - Chemical name, generic name and trade names with examples. Antipyretics, analgesics, antibiotics, antacids, antiseptics (definition and examples, structure not expected).

*Dyes:* Definition – Requirements of a dye - Theories of colour and chemical constitution – Structure and applications of martius yellow, indigo and alizarin.

*Food:* Food additives: Food preservatives, artificial sweeteners and antioxidants (definition and examples, structures not required) Commonly used permitted and non-permitted food colours (structures not required).

*Cement*: Manufacture, composition and setting.

Glass: Types of glasses and uses.

## References

1. Gurdeep R. Chatwal, Synthetic Drugs, Himalaya Publishing House, Bombay, 1995.

2. Jayashree Ghosh, *A Textbook of Pharmaceutical Chemistry*, 3<sup>rd</sup> Edn., S. Chand and Company Ltd., New Delhi, 1999.

3. B. Sivasankar, *Food processing and preservation*, Prentice – Hall of India Pvt. Ltd., New Delhi, 2002.

4. Srinivasan Damodaran, Kirk L. Parkin, Owen R. Fennema, *Food Chemistry*, 4<sup>th</sup> Edn., CRC Press, New York, 2007.

| Mark Distribution |          |  |  |  |  |
|-------------------|----------|--|--|--|--|
| Module I          | 10 Marks |  |  |  |  |
| Module II         | 10 Marks |  |  |  |  |
| Module III        | 10 Marks |  |  |  |  |
| Module IV         | 15 Marks |  |  |  |  |
| Module V          | 7 Marks  |  |  |  |  |
| Module VI         | 10 Marks |  |  |  |  |
| Module VII        | 17 Marks |  |  |  |  |

## SEMESTER IV

### **Course Code: CHE4C05(P)**

## **Complementary Course V: CHEMISTRY PRACTICAL**

Total Hours: 128; Credits: 4; Hours/Week: 2 (I, II, III & IV Semesters); Total Marks 100

(Internal 20 & External 80)

| CHE4C05(P)     | CHEMISTRY PRACTICAL                                                                                                                      |        | Т        | Р         | С  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-----------|----|--|
|                |                                                                                                                                          | 0      | 0        | 2         | 4  |  |
| Objective (s)  | To develop proficiency in quantitative and qualitative analysis<br>expertise in organic preparation and determination of physiconstants. |        |          |           |    |  |
| Course outcome | Course outcome (s)                                                                                                                       |        |          |           |    |  |
| CO1            | To understand the basic concepts of inter group separation.                                                                              |        |          |           |    |  |
| CO2            | To enable the students to develop analytical                                                                                             | and pr | eparatio | on skills | 5. |  |

## **General Instructions**

1. Semi micro analysis may be adopted for inorganic qualitative analysis.

2. For weighing, either electronic balance or chemical balance may be used.

3. For titrations, double burette titration method must be used.

4. Standard solution must be prepared by the student.

5. Use safety coat, gloves, shoes and goggles in the laboratory.

6. A minimum of 7 inorganic mixtures and 9 volumetric estimations must be done to appear for the examination.

7. Practical examination will be conducted at the end of semester IV.

## Module I: Laboratory Safety, First Aid and Treatment of Fires

Importance of lab safety – Burns – Eye accidents – Cuts – Gas poisoning – Electric shocks – Treatment of fires – Precautions and preventive measures.

## **Module II: Volumetric Analysis**

1. Weighing using chemical balance and electronic balance.

2. Preparation of standard solutions.

3. Neutralization Titrations (i) Strong acid – strong base. (ii) Strong acid – weak base. (iii) Weak acid – strong base.

4. Redox Titrations

Permanganometry:

(i) Estimation of oxalic acid.

(ii) Estimation of  $Fe^{2+}/FeSO_4.7H_2O/Mohr's$  salt.

Dichrometry:

(i) Estimation of  $Fe^{2+}/FeSO_4.7H_2O/Mohr's$  salt using internal indicator.

(ii) Estimation of  $Fe^{2+}/FeSO_4.7H_2O/Mohr's$  salt using external indicator.

Iodimetry and Iodometry:

(i) Estimation of iodine. (ii) Estimation of copper. (iii) Estimation of chromium.

5. Complexometric Titrations (i) Estimation of zinc. (ii) Estimation of magnesium. (iii) Determination of hardness of water.

## Module III: Gravimetric Analysis

1. Determination of water of hydration in crystalline barium chloride.

2. Estimation of  $Ba^{2+}$  as  $BaSO_4$ .

## Module IV: Inorganic Qualitative Analysis

(a) Reactions of Cations: Study of the reactions of the following cations with a view of their identification and confirmation.  $Pb^{2+}$ ,  $Bi^{3+}$ ,  $Cu^{2+}$ ,  $Cd^{2+}$ ,  $Fe^{3+}$ ,  $Al^{3+}$ ,  $Ni^{2+}$ ,  $Co^{2+}$ ,  $Mn^{2+}$ ,  $Zn^{2+}$ ,  $Ba^{2+}$ ,  $Sr^{2+}$ ,  $Ca^{2+}$ ,  $Mg^{2+}$  and  $NH_4^+$ . (b) Systematic qualitative analysis of a solution containing any two cations from the above list.

#### **Module V: Determination of Physical Constants**

1. Determination of boiling point.

2. Determination of melting point.

## **Module VI: Organic Preparations**

1. *p*-Bromoacetanilide from acetanilide.

2. *p*-Nitroacetanilide from acetanilide.

3. Benzoic acid from benzaldehyde.

4. Benzoic acid from benzamide.

#### References

1. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6<sup>th</sup> Edn., Pearson Education, Noida, 2013.

2. D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, *Fundamentals of Analytical Chemistry*, 8<sup>th</sup> Edn., Brooks/Cole, Thomson Learning, USA, 2004.

3. V. K. Ahluwalia, Sunita Dhingra, Adarsh Gulati, *College Practical Chemistry*, Universities Press (India) Pvt. Ltd., Hyderabad, 2008 (Reprint).

4. G. Svehla, Vogel's Qualitative Inorganic Analysis, 7<sup>th</sup> Edn., Prentice Hall, New Delhi, 1996.

5. V. V. Ramanujam, *Inorganic Semi Micro Qualitative Analysis*, 3<sup>rd</sup> Edn., The National Publishing Company, Chennai, 1974.

6. W. G. Palmer, Experimental Inorganic Chemistry, Cambridge University Press, 1970.

## **EVALUATION SCHEME**

# FOR

## **COMPLEMENTARY COURSES**

## **COMPLEMENTARY COURSE THEORY: EVALUATION SCHEME**

The evaluation scheme for each course contains two parts: *viz.*, internal evaluation and external evaluation.

## **<u>1. INTERNAL EVALUATION</u>**

20% of the total marks in each course are for internal evaluation. The colleges shall send only the marks obtained for internal examination to the university. The internal assessment shall be based on a predetermined transparent system involving written tests, class room participation based on attendance, assignment and seminar/viva in respect of theory courses. For practical course it is based on lab involvement and record.

#### **Table 1: Components of Evaluation**

| Sl. No.     | Components                                         | Marks |
|-------------|----------------------------------------------------|-------|
| 1           | Class room participation based on attendance (20%) | 3     |
| 2           | Test papers I (40%)                                | 6     |
| 3           | Assignment (20%)                                   | 3     |
| 4           | Seminar/viva (20%)                                 | 3     |
| Total Marks |                                                    | 15    |

#### Table 2: Percentage of attendance based on class room participation and eligible marks

| % of attendance | Marks |
|-----------------|-------|
| 85% and above   | 3     |
| 75 - <85%       | 2     |
| 50 - <75%       | 1     |

#### **Table 3: Pattern of Test Papers**

| Duration     | Pattern      | Total number<br>of questions | Number of<br>questions to be<br>answered | Marks for each<br>question | Ceilin<br>g of<br>Marks |
|--------------|--------------|------------------------------|------------------------------------------|----------------------------|-------------------------|
|              | Short answer | 6                            | Up to 6                                  | 2                          | 10                      |
| 1 Hour       | Paragraph    | 4                            | Up to 4                                  | 5                          | 15                      |
|              | Essay        | 2                            | 1                                        | 10                         | 10                      |
| Total Marks* |              |                              |                                          | 35                         |                         |

\*85% and above = 6, 65 to below 85% = 5, 55 to below 65% = 4, 45 to below 55% = 3, 35 to below 45% = 2, below 35% = 1

## **2. EXTERNAL EVALUATION**

External evaluation carries 80% marks. University examinations for two hours duration will be conducted at the end of each semester.

| Duration    | Pattern      | Total number of<br>questions | Number of<br>questions to be<br>answered | Marks for<br>each<br>question | Ceiling<br>of Marks |
|-------------|--------------|------------------------------|------------------------------------------|-------------------------------|---------------------|
|             | Short answer | 12                           | Up to 12                                 | 2                             | 20                  |
| 2 Hours     | Paragraph    | 7                            | Up to 7                                  | 5                             | 30                  |
|             | Essay        | 2                            | 1                                        | 10                            | 10                  |
| Total Marks |              |                              | 60                                       |                               |                     |

**Table 1: Pattern of Question Papers** 

## **COMPLEMENTARY COURSE PRACTICAL: EVALUATION SCHEME**

The evaluation scheme contains two parts: viz., internal evaluation and external evaluation.

## **1. INTERNAL EVALUATION**

20% of the total marks are for internal evaluation. The colleges shall send only the marks obtained for internal examination to the university.

## **Table 1: Components of Evaluation**

| Sl. No. | Components                                        | Marks |
|---------|---------------------------------------------------|-------|
| 1       | Record                                            | 12    |
| 2       | Lab involvement (viva $-4$ and punctuality $-4$ ) | 8     |
| Total M | Total Marks 20                                    |       |

#### Table 2: Number of Experiments and Marks for Practical Records

| Number of Experiments (Marks in brackets) |                  |  |
|-------------------------------------------|------------------|--|
| Volumetric Analysis                       | Mixture Analysis |  |
| 11-12 (6)                                 | 9-10 (6)         |  |
| 10 (5)                                    | 8 (5)            |  |
| 9 (4)                                     | 7 (4)            |  |

## **2. EXTERNAL EVALUATION**

External evaluation carries 80% marks. Practical examination will be conducted at the end of IV<sup>th</sup> semester.

| Duration  | Pattern                                           | Marks | Total |
|-----------|---------------------------------------------------|-------|-------|
|           | Question on qualitative and quantitative analysis | 8     |       |
| 3 Hours   | Procedure on volumetric analysis                  | 6     | 80    |
| 2 110 415 | Volumetric analysis                               | 28    |       |
|           | Mixture analysis                                  | 28    |       |
|           | Record                                            | 10    |       |

#### **Table 1: Pattern of Question Paper**

#### Guidelines

1. Valuation of Volumetric Procedure: Eight points - 6 marks. 1. Correct intermediate; 2. Preparation of standard solution; 3. Standardisation of intermediate; 4. Indicator and end point of standardization; 5. Making up of given solution; 6. Titration of made up solution; 7. Indicator; 8. End point/any other relevant points.

2. Marks for Result: The reported values (RV) of the students are compared with theoretical value (TV) and skilled value (SV) and calculate error percentage. Up to 1.5% error: 24 marks; between 1.51 - 2%: 20 marks; between 2.1 - 2.5%: 16 marks; between 2.51–3%: 12 marks; greater than 3%: 8 marks.

Marks for Calculation: Eight points – 4 marks. 1. Equivalent mass of the primary 3. standard substance; 2. Calculation of normality of primary standard; 3. Table for standardization of intermediate with standard substance and indicator at the top; 4. Calculation of normality of the intermediate; 5. Table for estimation including standard substance and indicator; 6. Calculation of normality of the given solution; 7. Equivalent mass of the compound/ion in the given solution; 8. Calculation of weight in the whole of the given solution.

4. Marks for Mixture Analysis: Group identification: 1 mark each. Cation identification tests: 3 mark each. Chemistry of identification tests: 3 mark each. Cation confirmation tests: 3 marks each. Chemistry of confirmation tests: 3 mark each. Systematic procedure: 2 marks.

| Table 2: | Evaluation | of Records |
|----------|------------|------------|
|          |            |            |

| Number of Experiments (Marks in brackets) |                  |  |
|-------------------------------------------|------------------|--|
| Volumetric Analysis                       | Mixture Analysis |  |
| (Max. Marks:5)                            | (Max. Marks: 5)  |  |
| 11-12 (5)                                 | 9-10 (5)         |  |
| 10 (4)                                    | 8 (4)            |  |
| 9 (3)                                     | 7 (3)            |  |